A Simple Evolutionary Algorithm with Self-adaptation for Multi-objective Nurse Scheduling
نویسندگان
چکیده
We present a multi-objective approach to tackle a real-world nurse scheduling problem using an evolutionary algorithm. The aim is to generate a few good quality non-dominated schedules so that the decision-maker can select the most appropriate one. Our approach is designed around the premise of ‘satisfying individual nurse preferences’ which is of practical significance in our problem. We use four objectives to measure the quality of schedules in a way that is meaningful to the decision-maker. One objective represents staff satisfaction and is set as a target. The other three objectives, which are subject to optimisation, represent work regulations and workforce demand. Our algorithm incorporates a self-adaptive decoder to handle hard constraints and a re-generation strategy to encourage production of new genetic material. Our results show that our multi-objective approach produces good quality schedules that satisfy most of the nurses’ preferences and comply with work regulations and workforce demand. The contribution of this paper is in presenting a multi-objective evolutionary algorithm to nurse scheduling in which increasing overall nurses’ satisfaction is built into the self-adaptive solution method.
منابع مشابه
A New Multi-objective Job Shop Scheduling with Setup Times Using a Hybrid Genetic Algorithm
This paper presents a new multi objective job shop scheduling with sequence-dependent setup times. The objectives are to minimize the makespan and sum of the earliness and tardiness of jobs in a time window. A mixed integer programming model is developed for the given problem that belongs to NP-hard class. In this case, traditional approaches cannot reach to an optimal solution in a reasonable...
متن کاملA multi-objective resource-constrained optimization of time-cost trade-off problems in scheduling project
This paper presents a multi-objective resource-constrained project scheduling problem with positive and negative cash flows. The net present value (NPV) maximization and making span minimization are this study objectives. And since this problem is considered as complex optimization in NP-Hard context, we present a mathematical model for the given problem and solve three evolutionary algorithms;...
متن کاملPareto-based Multi-criteria Evolutionary Algorithm for Parallel Machines Scheduling Problem with Sequence-dependent Setup Times
This paper addresses an unrelated multi-machine scheduling problem with sequence-dependent setup time, release date and processing set restriction to minimize the sum of weighted earliness/tardiness penalties and the sum of completion times, which is known to be NP-hard. A Mixed Integer Programming (MIP) model is proposed to formulate the considered multi-criteria problem. Also, to solve the mo...
متن کاملAn Energy-efficient Mathematical Model for the Resource-constrained Project Scheduling Problem: An Evolutionary Algorithm
In this paper, we propose an energy-efficient mathematical model for the resource-constrained project scheduling problem to optimize makespan and consumption of energy, simultaneously. In the proposed model, resources are speed-scaling machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the VIKO...
متن کاملTask Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids
In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...
متن کامل